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Quantum chaos: the study of the quantum 
mechanics of classically chaotic systems

Classical chaos: major hallmark is exponential 
sensitivity to initial conditions !positive Lyopunov 
exponents"
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“Real” quantum chaos means we deal 
with finite h, not only asymptotics

and differentiating it with respect to q and q′ we get, remembering y = y(q, q′),

∂S(q, q′, 2τ)
∂q

=
∂S(q, y, τ)

∂q
+

(−p(q, y, τ) + p(y, q′, τ)
) ∂y

∂q
(14)

=
∂S(q, y, τ)

∂q
(15)

by Eq. (??). Then

∂2S(q, q′, 2τ)
∂q∂q′ =

∂2S(q, y, τ)
∂q∂y

∂y

∂q′ (16)

thus

G(q, q′, 2τ) =
1√

2πih̄

(
∂2S(q, q′, 2τ)

∂q∂q′

)1/2

e
i
h̄ (S(q,q′,2τ)) (17)

which is what we wanted to show. Now that we have contracted two time steps of
length τ into one of length 2τ , further such contractions go the same way, allowing
us to write, finally, accounting for the various possible “roots” to Eq. (??) and
phases which we have ignored so far coming ultimately from the issue of whether
the stationary phase integrations encountered are of the “exp[ix2]” type or the
“exp[−ix2]” type

G(q, q′, t) =
1√

2πih̄

∑
k

(
∂2Sk(q, q′, t)

∂q∂q′

)1/2

e
i
h̄ (Sk(q,q′,t)+iνk) (18)

for a general time t. This is the Van Vleck semiclassical expression for the prop-
agator, somewhat modernized.
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Getting the Van Vleck propagator from the Feynman path integral

We have seen that

G(q, q′, t) = lim
N→∞

∫
· · ·

∫
dq1dq2 · · · dqN G(q, q1, t/N)G(q1, q2, t/N) · · · G(qN , q′, t/N)

= lim
N→∞

∫
· · ·

∫
dq1dq2 · · · dqN

∏
i

(
eiSi/h̄

A

)

= lim
N→∞

∫
· · ·

∫
dq1

A

dq2

A
· · · dqN

A
eiSpath/h̄ (1)

where

A =
(

mN

2πit

)1/2

(2)

and
Spath =

∑
Si (3)

Si =
m(qi − qi+1)2

2τ
− V (qi+1)τ (4)

(τ = t/N). The short time Green function G(q, q1, τ) for example is

G(q, q1, τ) =
(

m

2πih̄τ

)1/2

exp
[

i

h̄

(
m(qi − qi+1)2

2τ
− V (qi+1)τ

)]
(5)

=
(

1
2πih̄

y
∂2S(q, q1, τ)

∂q∂q1

)1/2

exp
[

i

h̄
S(q, q1, τ)

]
which makes for a good guess as to how the short time propagator might generalize
to longer times (i.e. the guess is that

G(q, q′, t) =
∑
k

(
1

2πih̄

∂2Sk(q, q′, t)
∂q∂q′

)1/2

exp
[

i

h̄
Sk(q, q′, t)

]
(6)

for any t where Sk(q, q′, t) is the classical action for the kth classical path con-
necting q′ with q in time t).

Noting that ∂S(q, q′, t)/∂q = p(q, q′, t), and ∂S(q, q′, t)/∂q′ = −p′(q, q′, t), we
examine one piece of the concatenation of Green’s functions by stationary phase,
namely
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Quantum Chaos
Random Matrix Theory

Corrections to RMT
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Wigner, 1950,59    Dyson, 1962,63  .....

Random Matrix Theory

Gaussian random distribution of Hamiltonians H:

P (H) = e−β Tr[H2]

(time reversal symmetry, H real symmetric: “GOE”)
Gives level repulsion: distribution of nearest neighbor spacings

P (s) ∼ se−πs2/4

1

Random matrix ensemble, probability of H is

Gaussian random distribution of Hamiltonians H:

P (H) = e−β Tr[H2]

(time reversal symmetry, H real symmetric: “GOE”)
Gives level repulsion: distribution of nearest neighbor spacings

P (s) ∼ s e−πs2/4
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Energy level spacing distribution, GOE:
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• Bohigas, Gianonni, and Schmit !1984": conjecture 
that classically chaotic systems give rise to 
random matrix statistics when quantized

• Berry !1983": Semiclassical arguments for random 
superposition of plane waves in classically chaotic 
systems

• Andreev, Agam, Simons, Altschuler !1996": “We 
prove the BGS conjecture...”

• Dozens of papers deriving every imaginable 
observable from RMT

• Semiclassical theories yielding random matrix 
statistics

Quantum Chaos and RMT
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QC = RMT?
No, but RMT is a foundation on which we can build 
better theories.
RMT is practically void of dynamics: infinite Lyopunov 
exponent
Random matrix ensembles need additional constraints 
necessitated by dynamics.
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Does not imply Gaussian random eigenfunctions

What is actually proven?
Schnirlman, Zelditch, Colin de Verdiere:

〈ψn|A|ψn〉 = Tr[δ(E −H(p, q))A(p, q)]

except for a set of ψn vanishing measure as h → 0.
The Weyl symbol A(p, q) is a “macroscopic” operator, independent of h̄.
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Maximum entropy method (unbiased except for normalization):

F =
∫

dH11 dH12 . . .
(
P (H) lnP (H) + βP (H)Tr[H2]

)
P (H) ∼ e−βTr[H2]

Maximum entropy method (unbiased except for normalization and dynamical constraints):

F =
∫

dH11 dH12 . . .

(
P (H) lnP (H) + βP (H)Tr[H2] +

∫
µ(t)P (H)f(H, t) dt

)

e.g., f(H, t) = 〈1|e−iHt/h̄|1〉.

P (H) ∼ e−βTr[H2]−
∫

µ(t)f(H,t) dt

-destroys invariance under arbitrary unitary transformation.

-good! The first lesson of dynamics: all states are not born equal.

- implies “local” RMT
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Amplitudes, probabilities in RMT

 

x

P(x)

Eigenfunctions ψn, Hψn = Enψn are also Gaussian random:

P (ψn) =
√

A

2π
exp

(
−Aψ2

n

2

)

P (ψ2
n) ≡ P (x) =

√
A

2πx
exp

(
−Ax

2

)

(Porter-Thomas distribution)

Spectra: project some localized state ϕ onto the eigenstates:

pn ≡ |〈ϕ|ψn〉|2

“Real” quantum chaos involves finite ! effects, i.e. the real world. Most semiclassical results are
for ! → 0, even though there are often used without modification for finite !

Autocorrelation function c(t) :

c(t) = 〈ϕ|e−iHt/!|ϕ〉 = 〈ϕ|ϕ(t)〉

Spectrum S(E)

S(E) =
∞∫

−∞
e−iEt/!c(t) dt =

∑
n

pϕ
n δ(E − En)

pϕ
n = |〈ϕ|ψn〉|2

RMT “dynamics”: instant decorrelation as N →∞

c(t) = 0, t > 0

1
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RMT predicts structureless spectra, 
apart from random fluctuations:

RMT, typical spectrum
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Quantum Dynamics

Eigenfunctions ψn, Hψn = Enψn are also Gaussian random:
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Spectra: project some localized state ϕ onto the eignestates:
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The  fourier transform of the dynamics up to 
the Heisenberg time gives eigenfunctions to a 
high degree of approximation...
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What does RMT say about the spectrum 
of a wavepacket?

E

E

c(t)

t0

phase space

Local RMT statistics
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unstable manifold

stable manifold
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Recurrences governed by Lyopunov exponents

Unstable
 Manifold

Stable
 Manifold

p

x

Recurrences governed by “grazing”
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Scarring and spectra
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RMT envelope, typical spectrum
Linear scar theory envelope,
typical spectrum
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What do random waves look 
like?
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Numerical test#baker’s map
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an = 〈En|α〉 pα
n

pα
n

= |〈E

E

n|α〉|2

pα
n measures the tendency of an eigenstate to be

large in a certain region of phase space.

Time averaged phase space transport

P (α|β) ≡ 1
T

∫ T→∞

0
|〈β|α(t)〉|2 dt

Easily shown: P (α|β) =
∑

pα
npβ

n

Phase Space Transport
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Chaotic P(a|b) ~ 1/N Integrable P(a|b) ~ 0
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P (a|b) =
∑

n

pa
npb

n

P (a|a) =
∑

n

(pa
n)2 = 1/N = I.P.R.

1



QUEST 2003

P(a|a) = 3/N
P(b|b) = 3/N
P(a|b) = 1/N

P(a|a) = K/N; K>3
P(b|b) = K/N
P(a|b) = 1/N

Gaussian:

non-Gaussian, random:

RMT:
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P(a|a) = 3/(λ N)
P(b|b) = 3/(λ N)
P(a|b) = 1/(λ N)

state-to-state flow affected by scarring-but only on p.o.'s

P(a|a) = 3/(λ N)
P(b|b) = 3/(λ N)
P(a|b) << 1/(λ N)
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V =
1

Tr(ρ2)

Pure state density:
∫

ρ2("p, "q) d"p d"q = h−N ,

ρav("p, "q, T ) =
1
T

T∫
0

ρ("p, "q, t)dt This average density will obey

hNTr[(ρav)2] ≡ 1
NT

≤ 1

This defines

Define volume in phase space

Define volume accessed in phase space:

NT , the number of phase space cells accessed.

Localization implied by 
short time recurrences
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We have

1
NT

= hNTr[(ρav)2] =
2
T

T∫
0

(1 − τ

T
)P (τ) dτ

where the survival probability P (τ) is

P (τ) = hNTr[ρ(0)ρ(τ)]

Note that in the case that ρ corresponds to a pure quantum state density |ϕ〉〈ϕ|, P is obtainable
from the spectral distribution S(E) of the state |ϕ〉, as follows:

S(E) =
1

2πh̄

∞∫
−∞

eiEt/h̄〈ϕ|ϕ(t)〉 dt

By inverse Fourier transform,

〈ϕ|ϕ(t)〉 =
∞∫

−∞
e−iEt/h̄S(E) dE,

and of course P (t) = |〈ϕ|ϕ(t)〉|2
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The rate R is easily shown, by differentiation, to be

R =




T∫

( − τ

T )P (τ)dτ(
T∫

( − τ

T )P (τ) dτ

)

steady state rate (for large enough T and between any recurrences)

R =
1

2
T∫
0

P (τ) dτ

=
1

T∫
−T

P (τ) dτ
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or
Volume occupied =

1
Tr(ρ2)

(4)

For more general distributions which vary smoothly over phase space, Eq.(4) is still a reasonable defi-
nition for the phase space volume (see Fig. 1).

As an example, if ρ arises from a pure state density as in Eq.(2a), then∫
ρ2("p, "q) d"p d"q = h−N , (5)

and the volume occupied is one cell of volume h−N , as it should be.
Suppose now that ρ is a nonstationary distribution ρ(t), evolving under the influence of the Hamilto-

nian H. We ask: how rapidly does ρ(t) sweep out new regions of phase space that it has not visited before?
To answer this question, we need a measure of where ρ(t) has visited. A natural choice is

ρav("p, "q, T ) =
1
T

T∫
0

ρ("p, "q, t)dt (6)

This average density will obey

hNTr[(ρav)2] ≡ 1
NT

≤ 1 (7)

This defines NT , the number of phase space cells accessed. The density ρav("p, "q, T ) clearly is nonvanishing
only where ρ("p, "q, t) has visited, but both distributions “feather out” rather than cut off abruptly in phase
space. That is to say, there is no sharp distinction between a region that has been visited by ρ("p, "q, t) and
one that has not, but the number of phase space cells visited still has meaning. Figure (1) helps to motivate
this point.

Combining the equations above and using the fact that Tr[ρ(t)ρ(t′)] = Tr[ρ(0)ρ(t′ − t)] we have

1
NT

= hNTr[(ρav)2] =
2
T

T∫
0

(1− τ

T
)P (τ) dτ (8a)

where the survival probability P (τ) is

P (τ) = hNTr[ρ(0)ρ(τ)] (8b)

Note that in the case that ρ corresponds to a pure quantum state density |ϕ〉〈ϕ|, P is obtainable from
the spectral distribution S(E) of the state |ϕ〉, as follows:

S(E) =
1

2πh̄

∞∫
−∞

eiEt/h̄〈ϕ|ϕ(t)〉 dt (9a)

By inverse Fourier transform,

〈ϕ|ϕ(t)〉 =
∞∫

−∞
e−iEt/h̄S(E) dE, (9b)

and of course P (t) = |〈ϕ|ϕ(t)〉|2. For the case of a pure state density, S(E) is often an experimentally
obtainable spectrum. So the quantity P (t), and via Eq.(8), NT , are often easily (if indirectly) measured.

The spectrum S(E) fully resolved into δ−function peaks:

S(E) =
∑

n

pϕ
n δ(E − En), (10a)
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|<φ|φ(τ)>|

N

H

N

τ

τ τ

R

Strong recurrences slow down the exploration of 
new phase space. They happen classically too, 
also slowing exploration, but there is no time 
limit.  The quantum system must explore before 
the Heisenberg time
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• Scarring and related phenomena affect conductance 
fluctuations, wavefunction statistics, ...

• RMT needs modification and is not a “sufficient” 
theory for classically chaotic systems.

• However, RMT is a great starting point and the 
mantra is “the system is random subject to the a priori 
known constraints”

• There is no proof the eigenfunctions of classically 
chaotic systems are Gaussian random;  some special 
slowly mixing cases are known where they are not.

Implications
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• connections of QC to Riemann Zeta function

• semiclassical asymptotics supporting RMT

• nonlinear sigma model, supersymmetry 
!powerful approach to RMT results"

• experiments

• ...

Quantum chaos is now a large and established 
field.  Other topic include
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